1820-54x-4.9x^2=0

Simple and best practice solution for 1820-54x-4.9x^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1820-54x-4.9x^2=0 equation:



1820-54x-4.9x^2=0
a = -4.9; b = -54; c = +1820;
Δ = b2-4ac
Δ = -542-4·(-4.9)·1820
Δ = 38588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{38588}=\sqrt{4*9647}=\sqrt{4}*\sqrt{9647}=2\sqrt{9647}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{9647}}{2*-4.9}=\frac{54-2\sqrt{9647}}{-9.8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{9647}}{2*-4.9}=\frac{54+2\sqrt{9647}}{-9.8} $

See similar equations:

| 4(1+s)=2(4s-2)+4 | | 4-t=3(t-1)=-5 | | 2(x=1)=3(x-4) | | (-16x^2)+275x-210=0 | | 2(x=1)=3(x-4( | | -8+4s/5=-16 | | 8-3n+6=-3n+14 | | 8h-8=6h+4=2h | | 2=1.13^n | | 2=1.04^n | | 2k/3+12=-4 | | -5(2t+2)=15 | | y−7=−12 | | 5x-8x+2=2x-14 | | -2q+1=-3 | | 3x/4-7x-4/2=26/3 | | 9y^2-60y+0=0 | | 3x+5-2x=8x-14 | | (-16x^2)+330x-121=0 | | 2k3(k+4)=-3 | | 4x+20+3x+2x+20=180 | | 3x+2-5x=8x-14 | | (-3x^2/2)+1=-53 | | a-6=8-( | | X+3x/4+X/2=90 | | 10n×42=1600n | | 6n=36n= | | G=2d÷26 | | -27+2x=-9(x+5) | | 120,701=0+2*x*100 | | 3+q=-2 | | 8(5x-9)=18 |

Equations solver categories